Abstract

In shallow estuaries, fluctuations in bottom dissolved oxygen (DO) at diel (24 h) timescales are commonly attributed to cycles of net production and respiration. However, bottom DO can also be modulated by physical processes, such as tides and wind, that vary at or near diel timescales. Here, we examine processes affecting spatiotemporal variations in diel-cycling DO in Escambia Bay, a shallow estuary along the Gulf of Mexico. We collected continuous water quality measurements in the upper and middle reaches of the Bay following relatively high (> 850 m3 s-1) and low (< 175 m3 s-1) springtime freshwater discharge. Variations in diel-cycling amplitude over time were estimated using the continuous wavelet transform, and correlations between DO and biophysical processes at diel timescales were examined using wavelet coherence. Our results reveal that freshwater discharge modulated inter-annual variations in the spatial extent and duration of summertime hypoxia through its effect on vertical density stratification. In the absence of strong stratification (> 15 kg m-3), vertical mixing by tropic tides and sea breeze enhanced diel fluctuations in deeper areas near the channel, while in shallower areas the largest fluctuations were associated with irradiance. Our findings suggest that processes affecting diel-cycling DO in the bottom layer can vary over a relatively short spatial extent less than 2 km and with relatively small changes in bottom elevation of 1 m or less. Implications for water quality monitoring were illustrated by subsampling DO timeseries, which demonstrates how low-frequency measurements may misrepresent water quality in estuaries where diel-cycling DO is common. In these systems, adequate assessment of hypoxia and its aquatic life impacts requires continuous measurements that capture the variation in DO at diel timescales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.