Abstract

Salivary gland cells are surrounded by a complex stromal environment, in which fibroblasts are the main cells in proximity to the gland cells. In this study, the interaction between parotid gland acinar cells (PGACs), fibroblasts, and biomaterials was investigated. We prepared different biomaterials, including chitosan, polyvinyl alcohol (PVA), poly (ethylene-co-vinyl alcohol) (EVAL), polyvinylidene fluoride (PVDF), and tissue culture polystyrene (TCPS) to culture fibroblasts and then collect their conditioned media to culture PGACs. We observed no difference in AQP3, AQP5, and E-cadherin expression among different fibroblast conditioned medium treatments. Interestingly, α-amylase expression was obviously enhanced in PGACs cultured in the presence of conditioned medium from fibroblasts cultured on PVDF. Higher neurotrophin-4 (NT-4) expression was observed in PVDF-derived fibroblast conditioned medium using a growth factor protein array assay. In addition, directly adding NT-4 into the culture medium significantly promoted α-amylase expression by PGACs. Finally, nestin and βIII-tubulin expression by fibroblasts cultured on PVDF was also enhanced. Together, these results suggest that PVDF could promote α-amylase expression by PGACs via the NT-4 produced by fibroblasts. Statement of SignificanceTo date, there is no effective therapy for patients with dry mouth with persistent salivary hypofunction. The study made use of different biomaterials to culture fibroblasts and then collect their conditioned media to culture PGACs. It was found that the effect of fibroblast conditioned medium from PVDF on the α-amylase expression of PGACs was obviously enhanced and higher neurotrophin-4 (NT-4) expression was found in PVDF-derived fibroblast conditioned medium. In addition, directly adding NT-4 into the culture medium significantly promoted the expression of α-amylase by PGACs and the expression of nestin and βIII-tubulin of fibroblasts after being cultured on PVDF was enhanced. Therefore, the present study represents the first description of the role of NT-4 in the expression of α-amylase of PGACs and the role of PVDF in the reprogramming fibroblasts into neural progenitor-like cells, indicating that PVDF could promote the expression of α-amylase by PGACs via the NT-4 produced by fibroblasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call