Abstract

AbstractThere has been a rapidly developing literature on the effects of some of the major drivers of global change on carbon (C) sequestration, particularly carbon dioxide (CO2) enrichment, land use change, nitrogen (N) deposition and climate change. However, remarkably little attention has been given to one major global change driver, namely biological invasions. This is despite growing evidence that invasive species can dramatically alter a range of aboveground and belowground ecosystem processes, including those that affect C sequestration. In this review, we assess the evidence for the impacts of biological invaders on forest C stocks and C sequestration by biological invaders. We first present case studies that highlight a range of invader impacts on C sequestration in forest ecosystems, and draw on examples that involve invasive primary producers, decomposers, herbivores, plant pathogens, mutualists and predators. We then develop a conceptual framework for assessing the effects of invasive species on C sequestration impacts more generally, by identifying the features of biological invaders and invaded ecosystems that are thought to most strongly regulate C in forests. Finally we assess the implications of managing invasive species on C sequestration. An important principle that emerges from this review is that the direct effects of invaders on forest C are often smaller and shorter‐term than their indirect effects caused by altered nutrient availability, primary productivity or species composition, all of which regulate long‐term C pools and fluxes. This review provides a conceptual basis for improving our general understanding of biological invaders on ecosystem C, but also points to a paucity of primary data that are needed to determine the quantitative effects of invaders on ecosystem processes that drive C sequestration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.