Abstract

Experimental investigations on the effects of biofouling on air-side heat transfer and pressure drop for three biofouled finned tube heat exchangers and one clean finned tube heat exchanger were performed. Artificial accelerated method of microorganism growth on the fin surface was used for simulating the biofouled finned tube heat exchangers. Experimental results indicate that the effects of biofouling on the air-side heat transfer coefficient decreases 7.2% at 2.0 m/s when the biofouled area ratio is 10%, while it decreases 15.9% at 2.0 m/s when the biofouled area ratio is 60%, and biofouling causes a 21.8% ∼ 41.3% increase in pressure drop when the air velocity is between 0.5 and 2.0 m/s. The increase of inlet air velocity is helpful to improve the long-term performance of finned tube heat exchanger. Biofouling makes the hydrophilic coating failure, and the condensation water easily converges on the fin surface where biofouling grows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call