Abstract

Exoskeletons have the potential to support daily activities by assisting the movement performance. Previous studies have shown that powered elbow exoskeletons can reduce muscle effort during continuous cyclic movement. However, natural movements have embedded stationary hold periods as well as transitions between postures. The human performance when using exoskeletons for more natural movements should be evaluated. In this study, we implemented visual and haptic electromyography (EMG) biofeedback to help people use an upper limb exoskeleton to perform a target position matching task. Participants (n=36) did not significantly reduce their muscle effort during hold periods when provided with biofeedback. Participants had difficulty relaxing their muscles at more flexed postures during hold periods, suggesting that they continued to provide effort instead of taking advantage of the device. To fully benefit from robotic exoskeletons, additional training and more advanced controllers might be needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call