Abstract

AbstractBiodiversity is found to have a significant promotion effect on ecosystem functions in manipulation experiments on grassland communities. However, its relative role compared with stand factors or functional identity is still controversial in natural forests. Here, we examined their relative effects on biomass and productivity during forest restoration. We investigated stand biomass and productivity for 24 plots (600 m2) across restoration stages in the subtropical forests of Mt. Shennongjia, Central China. We measured five key functional traits and calculated functional diversity (functional richness, evenness and dispersion) and community-weighted mean of traits. We used general linear models, variation partitioning methods to test the relative importance of stand factors (density, stand age, maximum height, etc.), functional identity, species and functional diversity on biomass and productivity. Our results illustrated that stand biomass and productivity increased significantly as forest restoration, and that community species richness increased, while functional dispersion decreased significantly. Variation partitioning analyses showed that diversity had no significant pure effects on biomass and productivity. However, diversity may affect biomass and productivity through the joint effect with stand factors and functional identity. Overall, we found that stand factors had the strongest effect on biomass and productivity, while functional identity significantly affects productivity but not biomass, suggesting that modulating stand structure and species identity are effective ways to enhance forest carbon storage and sequestrations potential in forest management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call