Abstract

We examined the metabolic response of an estuarine benthic community to additions of three materials being considered for use in manufacture of biodegradable substitutes for plastics. Diver-collected cores containing benthos were dosed with 59 g/m2 of three test materials, cornstarch, a bacterial polyester (PHBV), and ethylene vinyl alcohol (EVOH), or left undisturbed as controls. Fluxes of dissolved nutrients (ammonia, nitrate + nitrite, phosphate, silica) and dissolved inorganic carbon (DIC) were similar in control cores and cores dosed with EVOH during a 1-month test period at 20°C. Fluxes in cores dosed with starch and PHBV differed significantly from controls but not from each other. After 2 weeks of incubation, production of DIC was higher in cores containing starch and PHBV, while efflux of ammonia, nitrate, and nitrite was reduced. After 4 weeks of incubation, production of DIC was similar among all treatments and controls, while efflux of ammonia was high in the starch- and PHBV-containing cores compared to controls and cores with EVOH. Fluxes of silica and phosphate were similar in all cores during the experiment. These results indicate that both starch and PHBV are carbon-rich substrates readily metabolized by the benthic community but that their presence significantly alters normal nutrient exchange patterns. This response is expected because of the high carbon-to-nitrogen ratio of starch and PHBV and indicates that impacts of these two materials would be similar. However, the high biological oxygen demand of such materials and resulting disturbance of normal nutrient regeneration patterns of the benthos (delayed ammonia efflux and potential stimulation of denitrification) must be considered in developing strategies for their disposal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.