Abstract

The study aimed to evaluate the effect of the green alga Ulva lactuca and medicinal plant Nigella sativa extract on the activity of Staphylococcus aureus and Pseudomonas aeruginosa. The bacteria were incubated with the crude extracts and extracellular free potassium and phosphorus ions were measured in the medium. The levels of potassium and phosphorous were the maximum in the medium of S. aureus treated with N. sativa extract. The medium of P. aeruginosa incubated with U. lactuca extract was found to have the lowest phosphorous and the greatest potassium levels. The highest activity against P. aeruginosa was noticed with U. lactuca extract, where it caused reduction in the dry weight and glucose consumption of bacteria estimated by 28.41% and 41.09%, respectively. The antibacterial activity of N. sativa extract was the greatest against S. aureus and recorded 32.59% and 39.96% reduction in the bacterial dry weight and glucose uptake, respectively. Scanning Electron Microscopy study showed morphological changes in the cell wall of treated bacteria. The treatment of bacteria with the tested extract induced gene mutations. The results assessed the possible application of U. lactuca and N. sativa as a source of pharmacological benefits.

Highlights

  • The use of antibiotics has been an effective treatment option for a variety of microbial infections

  • The European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC) created terminology to define the various levels of the acquired antibiotic resistance profiles in microorganisms: multidrug resistant (MDR) was defined as “acquired non-susceptibility to at least one agent in three or more antibiotics”, extremely drug resistant (XDR) was defined as “non-susceptibility to at least one agent in all but two or fewer antimicrobial categories”, and pan drug resistant (PDR) was defined as “non-susceptibility to all agents in all antibiotics”

  • The levels of potassium 68.54% and phosphorus 38.24% recorded highly significant increase (P < 0.01) in the bacterial medium of S. aureus treated with N. sativa extract (Figure 1)

Read more

Summary

Introduction

The use of antibiotics has been an effective treatment option for a variety of microbial infections. Of study is testing the level of susceptibility and drug-resistance in microorganisms to specific antibiotics. The European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC) created terminology to define the various levels of the acquired antibiotic resistance profiles in microorganisms: multidrug resistant (MDR) was defined as “acquired non-susceptibility to at least one agent in three or more antibiotics”, extremely drug resistant (XDR) was defined as “non-susceptibility to at least one agent in all but two or fewer antimicrobial categories”, and pan drug resistant (PDR) was defined as “non-susceptibility to all agents in all antibiotics”. The study covered Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter spp. Many bacteria strains were identified as MDR, XDR or PDR, including P. aeruginosa, Klebsiella pneumoniae, S. aureus and Enterococcus spp., E. coli, and Acinetobacter spp. Many bacteria strains were identified as MDR, XDR or PDR, including P. aeruginosa, Klebsiella pneumoniae, S. aureus and Enterococcus spp., E. coli, and Acinetobacter spp. [2] [3] [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call