Abstract

Heavy metal pollution of agricultural soil has become a major serious concern. The development of suitable control and remediation strategies for heavy metal contaminated soil has become critical. The outdoor pot experiment was conducted to investigate the effect of biochar, zeolite, and mycorrhiza on the bioavailability reduction of heavy metals and its subsequent effects on soil properties and bioaccumulation in plants as well as the growth of cowpea grown in highly polluted soil. Zeolite, biochar, mycorrhiza, zeolite with mycorrhiza, biochar with mycorrhiza, and soil without any modifications were the six treatments used. The experiment was conducted with a completely randomized design and four replications. The results indicated that the combination of biochar with mycorrhiza had the highest values of root and shoot dry weight and the lowest heavy metal concentrations in root and shoot as well as bioconcentration and translocation factors for all heavy metals. The highest significant reductions in the availability of heavy metals over the control were found with biochar with mycorrhiza, which were 59.1%, 44.3%, 38.0%, 69.7%, 77.8%, 77.2% and 73.6% for Cd, Co, Cr, Cu, Ni, Pb and Zn, respectively. The application of biochar and zeolite either alone or in combination with mycorrhiza increased significantly soil pH and EC compared to mycorrhiza treatment and untreated soil. It can be concluded that the combination of biochar and mycorrhizal inoculation has great potential as a cost-effective and environmentally technique for enhancing heavy metal immobilization, lowering heavy metal availability and plant uptake, and improving cowpea plant growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call