Abstract

Given the complexity of soil components, a detailed understanding of the effects of single factors on phosphorus transport and retention will play a key role in understanding the environmental effects of phosphorus. In this work, quartz sand columns (considering five factors: doping rate, pH, particle size, ionic strength and cation type), combined with a two-site nonequilibrium transport model (TSM), were used to investigate phosphate (P) transport behavior. The results show that changes in doping ratio (0.4%–1.6%) and pH (5–9) have a notable effect on the transport of P, while, particle size of quartz sand hardly impacts the transport. When biochar was added at 1.6%, the surface of biochar increased the P fixation rate by about 37% through direct interaction with phosphate and bridging action with metal ions. As the morphology of P changed under different pH conditions, a part of P was immobilized in the form of precipitation. The immobilization of P was further enhanced with the increase of ionic strength. Compared with the direct interaction of P with biochar in Na+ solution, Ca2+ and Mg2+ solutions are more likely to adsorb P. Meanwhile, the TSM model also fits the transport behavior well. This study provides a perspective for evaluating the environmental behavior of P in the porous media interaction with biochar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.