Abstract

Biochar has been used as a sustainable amendment to mitigate environmental risks, improve plant growth and soil properties. This study conducted laboratory column tests to investigate the effects of plant-biochar interactions on shrub growth, hydraulic properties and nutrient contents of recycled concrete aggregates (RCAs). In total, three test conditions, namely, vegetated RCA without biochar (R), with 5 % biochar (R5) and 10 % biochar (R10) were subject to drying. With biochar application, total N, P and K of RCA increased by >100 %, 200 % and 31 %, respectively, while pH reduced to 8.3. With shrub growth, the lowest RCA pH was reduced to 7.8. The leaf area index (LAI) of shrub increased by 51 % due to biochar amendment, while the differences in shoot height were insignificant. The water retention capacity of RCA was enhanced by improving the saturated water content and air-entry value by 27 % and 100 %. The slope of the soil suction-LAI correlation for biochar amend cases was 1.6 times lower than R. This indicates that biochar may limit the increase of matric suction and prevent excessive water loss during drying. However, the differences between R5 and R10 were not significant. Therefore, 5 % biochar amendment is highly suggested as it can substantially improve plant growth and soil hydraulic properties during drying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.