Abstract

A incubation experiment was conducted to investigate whether combined amendment of biochar (B) and compost (CP), mushroom residue (M) and corn straw (Y) could enhance biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. After 77 days of incubation, both B + M and B + Y significantly (p < 0.01) increased removal rate of PAHs compared with amendment of biochar alone. However, B+CP resulted in a significant (p < 0.01) decreasing of PAHs removal. Compared with no biochar and no organic substrates addition (CK) and B, both B+M and B+Y significantly (p < 0.01) enhanced concentrations of dissolved organic carbon (DOC) and were favorable for the microbial growth reflected by microbial biomass carbons (MBC) and emission of carbon dioxide. Redundancy analysis (RDA) indicated that B + CP, B + M and B + Y separated the bacterial community compared with CK and B. However, the community composition structure in B + CP was different from that of B + M and B + Y. Moreover, the abundance of some PAHs degraders and PAH degradation genes predicted by PICRUSt software was promoted by B + M or B + Y, whereas that was inhibited under B + CP. The present study suggested that both B + M and B + Y could accelerate biodegradation of PAHs mainly through increasing the concentration of DOC and the abundances of microbial PAH degraders in soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call