Abstract

Although bioinspired sacrificial bonds have been demonstrated to be efficient in improving the mechanical properties of polymer materials, the effect of binding energy of a specific dynamic bond on the ultimate mechanical performance of a polymer network with dual-crosslink remains unclear. In this contribution, diamine and sulfur curing package are introduced simultaneously into a sulfonated cis-1,4-polyisoprene to create dually-crosslinked cis-1,4-polyisoprene network with sulfonate-aminium ionic bonds as the sacrificial bonds. Three diamines (primary, secondary and tertiary) with the same spacer between the two nitrogen atoms are used to create the ionic bonds with different binding energies. Although the binding energy of ionic bond does not affect the glass transition temperature of cis-1,4-polyisoprene (IR), it exerts definite influences on strain-induced crystallization and mechanical performance. The capabilities of diamine in dissipating energy, promoting strain-induced crystallization and enhancing the mechanical performance are in the same order of secondary diamine > primary diamine > tertiary diamine. The variations in mechanical performances are correlated to the binding energy of the ionic bond, which is determined by pKa values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.