Abstract

In this study, the effects of the polyvinylidene fluoride (PVdF) binder on the Mn dissolution behavior and electrochemical performances of LiMn2O4 (LMO) electrodes are investigated. It is found that increasing the PVdF content (3, 5, 7, and 10 wt.%) leads to reduced Mn dissolution, and thus superior cycle performance at elevated temperature (60 °C). This can be ascribed to increased binder coverage on the LMO surface, as evidenced by X-ray photoelectron spectroscopy measurements, which acts a role as a passivation layer for Mn dissolution. The rate capability of the LMO electrode is hardly deteriorated as the PVdF content increases, despite the increasing surface coverage. Electrochemical impedance measurements reveal that the LMO electrode with higher binder loading exhibits lower electrode impedance, which is suggested to be due to enhanced electronic passage through the composite LMO electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.