Abstract

BackgroundHD-tDCS is capable to increase the focality of neuromodulation and has been recently applied to improve endurance performance in healthy subjects. Objective/hypothesisWhether these putative advantages could be exploited in active subjects with type 1 diabetes mellitus (T1D) remains questionable. MethodsIn a double-blind, randomized crossover order, 11 high-level cyclists (27 ± 4.3 years; weight: 65.5 ± 8.6 kg; height: 180 ± 8 cm; VO2peak: 67.5 ± 2.9 mL min−1 kg−1) with T1D underwent either HD-tDCS (F3, F4) or control (SHAM) and completed a constant-load trial (CLT) at 75% of the 2nd ventilatory threshold plus a 15-km cycling time-trial (TT). ResultsAfter HD-tDCS, the total time to cover the TT was 3.8% faster (P < 0.01), associated with a higher mean power output (P < 0.01), and a higher rate of power/perception of effort (P < 0.01) and power/heart rate at iso-time (P < 0.05) than the SHAM condition. Physiological parameters during CLT and TT did not differ in both conditions. ConclusionsThese findings suggest that upregulation of the prefrontal cortex could enhance endurance performance in high-level cyclists with T1D, without altering physiological and perceptual responses at moderate intensity. Present data open to future applications of HD-tDCS to a wider population of active T1D-subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.