Abstract

Cells can sense and process various signals. Noise is inevitable in the cell signaling system. In a bacterial community, the mutual conversion between normal cells and persistent cells forms a bidirectional phenotype switching cascade, in which either one can be used as an upstream signal and the other as a downstream signal. In order to quantitatively describe the relationship between noise and signal amplification of each phenotype, the gain-fluctuation relationship is obtained by using the linear noise approximation of the master equation. Through the simulation of these theoretical formulas, it is found that the bidirectional phenotype switching can directly generate interconversion noise which is usually very small and almost negligible. In particular, the bidirectional phenotype switching can provide a global fluctuating environment, which will not only affect the values of noise and covariance, but also generate additional intrinsic noise. The additional intrinsic noise in each phenotype is the main part of the total noise and can be transmitted to the other phenotype. The transmitted noise is also a powerful supplement to the total noise. Therefore, the indirect impact of bidirectional phenotype switching is far greater than its direct impact, which may be one of the reasons why chronic infections caused by persistent cells are refractory to treat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.