Abstract

BackgroundIn order to facilitate the safe and long-term delivery of peritoneal dialysis (PD), it is necessary to improve the biocompatibility of peritoneal dialysis fluids (PDFs). The novel bicarbonate/lactate-buffered neutral PDFs (B/L-PDFs) are expected to be improved biocompatible. This study evaluated the biocompatibility of B/L-PDFs by analysis on the profile of angiogenesis-related proteins in drained dialysate of patients undergoing PD.MethodsConcentrations of 20 angiogenesis-related proteins in the dialysate were semi-quantitatively determined using a RayBio® Human Angiogenesis Antibody Array and were compared between B/L-PDFs and conventional lactate-buffered neutral PDFs (L-PDFs).ResultsThe expression of growth-related oncogene (GRO α/β/γ), which belongs to the CXC chemokine family, decreased significantly after use of the B/L-PDFs compared to the L-PDFs (P = 0.03). The number of the proteins with lower level in the B/L-PDFs compared with L-PDFs was significantly negatively correlated with the PD duration (Spearman ρ = − 0.81, P = 0.004).ConclusionThis study suggested that B/L-PDFs are more biocompatible than conventional PDFs.

Highlights

  • In order to facilitate the safe and long-term delivery of peritoneal dialysis (PD), it is necessary to improve the biocompatibility of peritoneal dialysis fluids (PDFs)

  • Despite lactate-buffered neutral PDFs (L-PDFs), which are used for majority of PD patients, having reportedly improved bioavailability, L-PDFs still include a high lactate content (40 mEq/L)

  • Kuma et al reported a lactate-induced reduction in cell viability, showing that apoptosis of human peritoneal mesothelial cells was markedly induced by L-PDFs, but not by B/L-PDFs, which was attenuated by knockdown of monocarboxylate transporter-1, a cell membrane lactate transporter [11]

Read more

Summary

Introduction

In order to facilitate the safe and long-term delivery of peritoneal dialysis (PD), it is necessary to improve the biocompatibility of peritoneal dialysis fluids (PDFs). The novel bicarbonate/lactate-buffered neutral PDFs (B/L-PDFs) are expected to be improved biocompatible. Fluid retention and encapsulating peritoneal sclerosis (EPS) that (2021) 7:29 factors such as high glucose and lactate contents, high osmolality, glucose degradation products (GDPs) and low pH [6]. High lactate buffer content in PDFs is a one of the important non-physiological factors that cause development of peritoneal membrane failure [7]. Despite lactate-buffered neutral PDFs (L-PDFs), which are used for majority of PD patients, having reportedly improved bioavailability, L-PDFs still include a high lactate content (40 mEq/L). Against this background, novel PDFs containing physiological concentrations (25 mEq/L) of sodium bicarbonate and low concentrations (10 mEq/L) of lactate (B/L-PDFs) have recently been developed. Kuma et al reported a lactate-induced reduction in cell viability, showing that apoptosis of human peritoneal mesothelial cells was markedly induced by L-PDFs, but not by B/L-PDFs, which was attenuated by knockdown of monocarboxylate transporter-1, a cell membrane lactate transporter [11]

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call