Abstract

Iridium coating was produced on various substrates using a double glow plasma. The effects of bias voltage and gas pressure on orientation and microstructure of the coating were studied. The orientation, microstructure and composition of the coating were evaluated by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. The results showed that iridium coatings on various substrates all exhibited the preferred (220) orientation under the same deposition conditions. The microstructure of the coating was affected by bias voltage, gas pressure and substrate effects. The bias voltages had a significant impact on the crystal orientation of the coating. The increase of bias voltage resulted in high substrate temperature and large deposition rate. An increase in the coating thickness can affect the microstructure and orientation of the coating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.