Abstract

In the present study, composite materials were elaborated of mixed scrap of Mg-based casting alloys and low melting point Bi–Sn–Pb alloy by high energy ball milling, and their reactivity in NaCl solution with hydrogen release was tested. The impacts of the additive content and ball milling duration on their microstructure and hydrogen generation performance were investigated. Scanning electron microscopy (SEM) analysis revealed significant microstructural transformations of the particles during milling, and X-ray diffraction analysis (XRD) proved the formation of new intermetallic phases Mg3Bi2, Mg2Sn, and Mg2Pb. The said intermetallic phases were anticipated to act as ‘microcathodes’ enhancing galvanic corrosion of the base metal. The dependency of the samples’ reactivity on the additive content and milling duration was determined to be nonmonotonic. For the samples with 0, 2.5, and 5 wt.% Rose alloy, ball-milling during 1 h provided the highest hydrogen generation rates and yields (as compared to 0.5 and 2 h), while in the case of the maximum 10 wt.%, the optimal time shifted to 0.5 h. The sample activated with 10 wt.% Rose alloy for 0.5 h provided the highest ‘metal-to-hydrogen’ yield and rapid reaction, thus overperforming those with lower additive contents and that without additives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.