Abstract

This paper investigates the effects of belt flexural rigidity and belt tension on transmission error of a carriage-driving system. The beam model associated with both the clamped and moving boundary conditions at two ends is utilized to derive the governing equation of the belt. The belt flexural rigidity is obtained and verified by an experimental technique. In addition, a numerical method is proposed to determine the belt profile, transmission error and transmission stiffness. Results show that transmission error of a carriage-driving system increases when the carriage moves away from the driving pulley due to finite belt flexural rigidity. According to the analyses, application of appropriate tension on the belt can significantly reduce the error. Furthermore, the transmission stiffness for representing the entire rigidity between the carriage and pulley is investigated based on the proposed beam model. A three-dimensional plot that indicates the relationship among the transmission stiffness, belt tension and the position of the carriage is obtained. [S1050-0472(00)01102-8]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.