Abstract

Beclin 1 is involved in autophagy, differentiation, apoptosis and cancer progression, and functions as a haploinsufficient tumor suppressor gene. The aim of the present study was to elucidate the function of Beclin 1 in colon cancer. A Beclin 1-expressing plasmid was transfected into HCT-15 and HCT-116 cells, and the phenotypes and associated molecules were determined. Beclin 1 transfectants were subcutaneously injected into nude mice to determine tumor growth, and proliferation and apoptosis levels using Ki-67 immunostaining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), respectively. Beclin 1 overexpression inhibited viability as determined using a Cell Counting Kit-8 assay, inhibited migration and invasion as determined using a wound healing assay or Transwell assay, and lamellipodia formation by filamentous actin staining, induced autophagy as determined using electron microscopy, and light chain 3B (LC-3B) expression, and apoptosis as determined using Annexin V staining in the two cell lines (P<0.05). Beclin 1 induced G2 arrest of HCT-15 transfectants as determined using propidium iodide staining (P<0.05), whereas HCT-116 transfectants were arrested in G1 phase (P<0.05). The two transfectants exhibited increased expression of c-Myc, cyclin D1, β-catenin, insulin-response element 1 and 78 kDa glucose-regulated protein compared with the control and mock cells as determined using the reverse transcription-quantitative polymerase chain reaction (P<0.05). Beclin 1 overexpression upregulated LC-3B and cyclin-dependent kinase 4 expression, but downregulated cyclin E expression of the cancer cell lines as determined using western blot analysis (P<0.05). Beclin 1 expression in vivo significantly suppressed the proliferation of colon cancer cells in xenograft models via inducing apoptosis by TUNEL, and inhibiting proliferation by Ki-67 expression (P<0.05). Beclin 1 overexpression may reverse aggressive phenotypes and suppress colon cancer tumor growth, and be employed as a target molecule for gene therapy of patients with colon cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call