Abstract

For straight or spiral bevel gears of nominal spherical involute design, the resultant total force vector transmitted by the gear mesh, in the absence of friction, lies in the plane of tooth contact. This force vector can be characterized by three scalar components, two orthogonal force components lying in the plane of contact and the resultant moment taken about the nominal center of the zone of contact. Equations for these three generalized force components are derived. The equations are expressed in terms of tooth pair/gear body stiffnesses, bearing/bearing support flexibility influence coefficients, the shaft input torque, deviations of the tooth running surfaces from perfect spherical involute surfaces, and bearing centerline offsets from the positions occupied by the base cone axes of the perfect involute bevel gear counterparts to the actual gears under consideration. Inertial forces arising from transverse and axial vibrations of the gear bodies are assumed to be negligible in comparison with the bearing support reaction forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.