Abstract

Parametric steady-state vibrations of an asymmetric rotor while passing through primary resonance and the associated stability behavior are analyzed. The undamped case is considered and the equations of motion are rewritten in a from suitable for applying the method of multiple scales. Sensitivity to the bearing as well as shaft asymmetries of the oscillations due to unbalance excitation is evaluated. Expressions for amplitude and frequency modulation functions are obtained and are specialized to yield the steady-state solutions near primary resonance. Frequency-amplitude relationships that result from combined parametric and mass unbalance excitations are derived. Stability regions in the parameter space are obtained based on the time evolution of the amplitude and phase of the steady-state motions. The effects of bearing asymmetry on the amplitude and phase of the resonant oscillations are brought out. The sensitivity of vibrational and stability characteristics to various rotor-dynamic system parameters is illustrated through a numerical investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.