Abstract

The streaming of an intense ion beam relative to background plasma can cause the development of fast electrostatic collective instabilities. The plasma waves produced by the two-stream instability modify the ion beam current neutralization and produce non-linear average forces which can lead to defocusing of the ion beam. Recently, a theoretical model describing the average de-focusing forces acting on the beam ions has been developed, and the scalings of the forces with beam-plasma parameters have been identified (Startsev et al. in press[1]). These scalings can be used in the development of realistic ion beam compression scenarios in present and next-generation ion-beam-driven high energy density physics and heavy ion fusion experiments. In this paper the results of particle-in-cell simulations of ion beam propagation through neutralizing background plasma for NDCX-II parameters are presented. The simulation results show that the two-stream instability can play a significant role in the ion beam dynamics. The effects of velocity tilt on the development of the instability and ion beam compressibility for typical NDCX-II parameters are also simulated. It is shown that the two-stream instability may be an important factor in limiting the maximum longitudinal compression of the ion beam.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.