Abstract

Neutron induced damage in future nuclear materials can be studied using heavy ion beams only if the differences in the microstructure evolution are well understood. Large variations in the damage dose rate, caused by scanning of the ion beam, can alter the microstructure compared to steady-state irradiation. We study the effect of scanning on the microstructure by irradiating pure iron with a 10 MeV Fe ion beam to a dose of 0.2 dpa. The beam is scanned in one direction with frequencies of 200 Hz and 10 kHz. Different shapes of the beam are also used to study the effect of dose variation. All of the irradiations are conducted at room temperature using the DiFU chamber at RBI. TEM analysis shows differences between the narrow beam and defocused irradiation modes, including unusual void formation observed at 10 kHz. A wider beam reduces the effect of scanning speed and no voids are found in this scanning case.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call