Abstract

We have studied the electron beam quality in a free-electron laser (FEL) oscillator by using two electron beams of different harmonically related energies in the FEL facility, which is operated in the infrared and far-infrared regions. The electron beam quality, such as emittance, energy spread, and higher-order modes were studied using an extended three-dimensional (3D) FEL code for two electron beams that we have developed. The variations in the radiation amplitude of the electron beam’s emittances, and energy spread were also calculated for a tapered wiggler for the multiparticle and multi-pass number using a new 3D code. The evolution of the radiation field intensity for higher-order modes of the wiggler with beam emittance and energy spread was studied for the two-electron beam’s FEL performance. We found that the radiation intensity was degraded due to the energy spread and the emittance of the electron beam. We minimized the degradation of the radiation intensity by optimizing the tapered wiggler for the coupled two-beam FEL oscillator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call