Abstract

The morphology of an electroless-plated Cu electrode was investigated as a function of bath composition. To enhance the selectivity of Cu electrode deposition on the surface of an indium tin oxide layer, a Ti/Cu multi-layer was deposited as a Cu electrode seed layer by physical vapor deposition, and then electroless plating was performed using various complexing agents and a surfactant. The degree of selectivity was effectively influenced by the type of complexing agent. The electroless plating solution containing N,N,N′,N′-tetrakis(2-hydroxypropyl)ethylenediamine (THPED) as complexing agent showed excellent selective growth of the Cu electrode as compared to the solution containing ethylenediaminetetraacetic acid. Even though THPED led to better selective growth of the electroless-plated Cu electrode, the aspect ratio of electrode lateral growth was about 2.7 times that of vertical growth. By adding a nonionic surfactant, the ratio between vertical growth rate and lateral growth rate was improved about 4.6 times. The Cu–THPED electroless plating with nonionic surfactant provided a drastic decrease in lateral growth rate, compared with the Cu–THPED electroless plating bath excluding nonionic surfactant. The Cu–THPED solution including nonionic surfactant is a promising composition of electroless plating solution for the clear selective plating of Cu electrodes on hetero-junctions with intrinsic thin layer solar cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.