Abstract

The mechanism of caspase-3-dependent apoptosis induced by photodynamic therapy (PDT) of cultured Chinese hamster V79 cells with pheophorbide a (PPa) was investigated. The PPa-PDT induced rapid apoptosis within 30 min after irradiation of cells. This apoptosis was inhibited by the 1O2 quencher N3- and caspase-3 inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde, suggesting that 1O2 activated caspase-3 and then caused apoptosis. The intracellular calcium [Ca2+]i chelator (acetoxymethyl)-1,2-bis(o-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA-AM) and the cyclic adenosine monophosphate (cAMP)-increasing agent forskolin also inhibited not only the PPa-PDT-induced activation of caspase-3 but also apoptosis in V79 cells. Furthermore, PPa-PDT-induced cytochrome c release from mitochondria was found to be inhibited by the treatment with BAPTA-AM but not forskolin. These results indicated that [Ca2+]i and cAMP independently serve as regulators for PPa-PDT-induced apoptosis in the upstream of caspase-3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.