Abstract

The effects of banana resistant starch (BRS) on obesity-related metabolic and intestinal flora were investigated in a high-fat diet-induced obesity model. After 6 weeks of intervention, the glucolipid metabolism index [blood glucose (GLU), total cholesterol (TC), triacylglycerol (TG), low density lipoprotein-cholesterol (LDL-C), and high density lipoprotein-cholesterol (HDL-C)], hormone index [leptin (LEP), insulin (INS), ghrelin, adiponectin (ADP), and thyroxine (T4)], and 16S rRNA sequencing analyses were performed for each group to explore the regulating effect of intestinal flora and the mechanism of weight loss in obese rats. The results showed that (1) BRS intervention significantly reduced the levels of GLU, TG, TC, LDL-C, LEP, and INS (p < 0.01) and increased the contents of ghrelin (p < 0.05) and ADP (p < 0.01). (2) BRS could improve the diversity of intestinal flora and regulate the overall structure of intestinal microorganisms, mainly by upregulating the Bacteroides/Firmicutes ratio and the relative abundance of Cyanobacteria and downregulating the relative abundances of Deferribacteres and Tenericutes (at the phylum level). BRS could inhibit the proliferation of Turicibacter, Romboutsia, and Oligella and increase the abundances of Bacteroides, Ruminococcaceae, and Lachnospiraceae (at the genus level). (3) Some significant correlations were observed between the gut microbiota and biomarkers. Turicibacter, Romboutsia, and Oligella were positively correlated with GLU, TG, TC, LEP, and INS and negatively correlated with ghrelin and ADP. Bacteroides, Parabacteroides, and Akkermansia were negatively correlated with GLU, TG, and TC. Conclusion: BRS had promising effects on weight loss, which could be associated with the improvement in host metabolism by regulating intestinal flora.

Highlights

  • Obesity (BMI ≥ 30 kg/m2) is a metabolic disease that results in weight gain due to the accumulation of a large amount of adipose tissue in the body (Prospective Studies Collaboration, 2009)

  • The present study aimed to explore the effect of banana resistant starch (BRS) on intestinal flora and discuss the correlation among intestinal flora, the glucolipid metabolism index and serum hormones in a high-fat diet-induced obesity model in order to understand the mechanism of BRS-induced weight loss

  • Increasing evidence showed that the levels of serum parameters and the relative abundance of gut microbiota will change dramatically with the development of obesity

Read more

Summary

Introduction

Obesity (BMI ≥ 30 kg/m2) is a metabolic disease that results in weight gain due to the accumulation of a large amount of adipose tissue in the body (Prospective Studies Collaboration, 2009). Banana Resistant Starch and Anti-obesity high-fat diet appear to be the most important factors causing obesity (Chooi et al, 2019). Obesity is a prevalent manifestation of metabolic disorders, and accumulating evidence has demonstrated that TC, TG, LDL-C, INS, and LEP levels were significantly higher in obese than in normal weight people, while the concentrations of ADP and ghrelin decreased (Yildiz et al, 2004; Addante et al, 2011). Vekic’s work (Vekic et al, 2019), which focused on metabolic disorders in obesity, indicated that high concentrations of TG and LDL-C accompanied by decreased HDL-C concentrations are the main characteristics of dyslipidaemia. Obesity will increase the risk of a variety of diseases, such as cardiovascular diseases (hypertension, atherosclerosis, and hyperlipidaemia) (Lavie et al, 2014), type 2 diabetes (Malik et al, 2010) and some cancers (esophageal cancer, cholangiocarcinoma, and pancreatic cancer) (Nam, 2017), which cause great threats to global public health and have passive effects on the quality of human life and healthcare costs (Tremmel et al, 2017)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call