Abstract

An icosahedral quasicrystalline alloy in the Al-Fe-Cu system has been mechanically milled in a high-energy ball mill (Szegvari attritor) for 1, 3, 6 and 10 h. Samples were characterized by X-ray diffraction and transmission electron microscopy. The evolution of nanosize crystallites of the disordered B2 phase (bcc; a = 0.29 nm), coexisting with either the parent icosahedral phase or an amorphous phase, occurs during milling. Isothermal heat treatment of milled powder at various temperatures (200, 500, 600, 700, 800 and 850°C) leads in all cases, except at 200°C, to the transformation from disordered B2 and amorphous phases to an ordered B2 phase with a high degree of long-range ordering. The maximum degree of superlattice ordering was found after isothermal treatment at 800oC. The implications of these results are discussed with reference to phase equilibria existing between crystalline and quasicrystalline phases in the Al-Fe-Cu system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.