Abstract

Heavy metal contamination has caused serious threats to surrounding fragile environments and human health. While the novel microbial-induced carbonate precipitation (MICP) technology in the recent years has been proven effective in improving material mechanical and durability properties, the mechanisms remedying heavy metal contamination still remain unclear. In this study, the potential of applying the MICP technology to the lead remediation under the effects of urease activity and calcium source was explored. The values of OD600 corresponding to the ureolytic bacterial activity, electrical conductivity (EC), urease activity (UA) and pH were applied to monitor the degree of urea hydrolysis. Further, the carbonate precipitations that possess different speciations and cannot be distinguished through test tube experiments were reproduced using the Visual MINTEQ software package towards verifying the validity of the proposed simulations, and revealing the mechanisms affecting the lead remediation efficiency. The findings summarised in this work give deep insights into lead-contaminated site remediation engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.