Abstract

ABSTRACTBacillus amyloliquefaciens is a nonpathogenic microorganism whose highly active amylase is widely isolated from soil and plants. TL106 is an isolate of Bacillus amyloliquefaciens isolated from cold- and disease-resistant Tibetan pigs in Linzhi, Tibet. Here, we report that TL106 not only could survive in acidic environments, high bile salt concentrations, and high-temperature conditions but also was resistant to antibiotics. It significantly improved the growth performance of weaned piglets, especially in the prevention of diarrhea. The crude fiber and crude ash digestibility in weaned piglets after TL106 administration was considerably higher than that in other groups. The results of 16S rRNA sequencing conveyed that TL106 stabilized gut microbiota that was disturbed by the weaning process with an increased level of Lachnospiraceae, Peptococcaceae.rc4_4, Erysipelotrichaceae.L7A_E11, and Mollicutes.RF39. Hence, this study proved that Bacillus amyloliquefaciens TL106 might be a candidate for antibiotics in Duroc×Landrace×Yorkshire weaned piglets.IMPORTANCE Antibiotics are often used to promote animal growth and prevent diarrhea in weanling piglets. Nevertheless, intestinal pathogenic bacterial resistance and drug residues caused by antibiotic overuse are worthy of concern and demand an urgent solution. Bacillus amyloliquefaciens TL106 has been isolated from cold- and disease-resistant Tibetan pigs in Linzhi, Tibet. It significantly improved the growth performance, decreased diarrhea, increased the absorption of crude substances, and regulated the gut flora homeostasis in Duroc×Landrace×Yorkshire weaned piglets. As an antibiotic candidate, TL106 perfectly displayed its probiotic potential and pollution-free properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.