Abstract

Effects of B4C on the microstructure and properties of Mg94Zn2.5Y2.5Mn1 alloy were investigated by means of optical microscope, scanning electron microscope, X-ray diffraction, transmission electron microscope, nano indentation tester and electronic universal testing machine. The results indicated that the as-cast Mg94Zn2.5Y2.5Mn1 alloy was mainly composed of α-Mg, fishbone-like W phase, and block 18 R long period stacking ordered (LPSO) phase. The addition of an appropriate amount of B4C could effectively refine grains, promote the formation of the LPSO phase and inhibit the generation of the W phase. The microstructure and mechanical properties of the alloy were both optimal at the addition of 0.5 at.% B4C. The microstructure exhibited a refined grain size from 41.2 μm to 20.7 μm, and the volume fraction of the LPSO phase increased from 8.1 % to 22.5 %. The yield strength increases from 112 MPa to 145 MPa, the tensile strength of the alloy was enhanced from 192 MPa to 256 MPa, and the elongation increased from 4.8 % to 8.6 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.