Abstract

The timing and sequence of safe campus reopening has remained the most controversial topic in higher education since the outbreak of the COVID-19 pandemic. By the end of March 2020, almost all colleges and universities in the United States had transitioned to an all online education and many institutions have not yet fully reopened to date. For a residential campus like Stanford University, the major challenge of reopening is to estimate the number of incoming infectious students at the first day of class. Here we learn the number of incoming infectious students using Bayesian inference and perform a series of retrospective and projective simulations to quantify the risk of campus reopening. We create a physics-based probabilistic model to infer the local reproduction dynamics for each state and adopt a network SEIR model to simulate the return of all undergraduates, broken down by their year of enrollment and state of origin. From these returning student populations, we predict the outbreak dynamics throughout the spring, summer, fall, and winter quarters using the inferred reproduction dynamics of Santa Clara County. We compare three different scenarios: the true outbreak dynamics under the wild-type SARS-CoV-2, and the hypothetical outbreak dynamics under the new COVID-19 variants B.1.1.7 and B.1.351 with 56% and 50% increased transmissibility. Our study reveals that even small changes in transmissibility can have an enormous impact on the overall case numbers. With no additional countermeasures, during the most affected quarter, the fall of 2020, there would have been 203 cases under baseline reproduction, compared to 4727 and 4256 cases for the B.1.1.7 and B.1.351 variants. Our results suggest that population mixing presents an increased risk for local outbreaks, especially with new and more infectious variants emerging across the globe. Tight outbreak control through mandatory quarantine and test-trace-isolate strategies will be critical in successfully managing these local outbreak dynamics.

Highlights

  • We model the local epidemiology of the COVID-19 outbreak using an SEIR model [2, 6, 14, 23] with four compartments, the susceptible, exposed, infectious, and recovered populations, governed by the set of ordinary differential equations, Ṡ = − β(t) S I∕N

  • The COVID-19 pandemic remains an enormous challenge for higher education, especially for residential college campuses with a diverse student population from all across the country

  • We explore the effects of campus reopening for the example of Stanford University, a residential campus in Santa Clara County, California, with an undergraduate enrollment of 6479 students

Read more

Summary

Objectives

The objectives of this study are twofold: First, we perform a retrospective study to evaluate the risks that would have been associated with the reopening of Stanford University in the spring, summer, and fall of 2020, and winter of 2021

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call