Abstract

ESIPT behavior has attracted a lot of eyes of researchers in recent years because of its unique optical properties. Due to its large Stokes shift and double emission fluorescence, white light can be generated in the fluorophore based on the excited state intramolecular proton transfer (ESIPT) principle. The excited state proton transfer behavior of hydroxylated benzoxazole (BO-OH), benzothiazole (BS-OH) and benzoselenazole (BSe-OH) have been investigated in heptane, chloroform and DMF solvents. By comparing the infrared vibration spectra and the variation of bond parameters from the S0 to S1 states, and analyzing the frontier molecular orbitals, the influence of hydrogen bond dynamics, the solvent polarity, charge redistribution and the effects of different proton acceptors on proton transfer were observed. The only structural difference among the three substituted hydroxyfluorenes is the heteroatom in the azole ring (oxygen, sulfur and selenium, respectively). We have scanned the potential energy curve of the ESIPT process, and compared the potential barrier, it is found that the heavier chalcogen atoms are more favorable for proton transfer. At the same time, the potential application of changing heteroatoms in the azole ring by walking down the chalcogenic group in crystal luminescence color regulation is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call