Abstract

The present study was designed to assess effects of aversive stimuli on learning and memory in wild-caught Arctic ground squirrels (AGS, Spermophilus parryii) using an active avoidance learning paradigm. Results indicate that animals trained with low-value aversive stimuli (air puffs and lights) retained the task better than animals trained with high-value aversive stimuli (air puffs, lights, and foot shock). Poor retention could not be explained by learning impairment, fear-induced freezing behavior or the effects of massed versus spaced training trials. Wild-caught AGS readily hibernate under laboratory conditions and provide a model of pronounced adult synaptic plasticity associated with emergence from hibernation. Characterization of learning and retention using active avoidance as well as other learning paradigms is a first step towards developing behavioral paradigms to assess cognitive function in this wild-trapped species. The present study shows that captive AGS are sensitive to aversive stimuli, argues for a direct effect on retention and suggests that high baseline levels of stress in a captive population may influence behavioral measures. The results further suggest that future studies of the effects of hibernation on learning and retention of active avoidance tasks employ low-level aversive stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call