Abstract
The heat transfer coefficient (HTC) is often averaged spatially when designing heat exchangers. Since the HTC could vary appreciably about a heat transfer enhancement feature such as a pin fin or a rib, it is of interest to understand the effects of averaging the HTC on design. This computational study examines those effects via a unit problem—a flat plate of thickness H and length L, where L represents the distance between pin-fins or ribs. This flat plate is heated on one side, and cooled on the other. Variable HTC is imposed on the cooled side—a higher HTC (hH) over LH and a lower HTC (hL) over LL = L − LH. For this unit problem, the following parameters were studied: abrupt versus gradual transition between hH and hL, hH/hL, LH/L, and H/L. Results obtained show that if the averaged HTC is used, then the maximum temperature in the plate and the maximum temperature gradient in the plate can be severely underpredicted. The maximum temperature and the maximum temperature gradient can be underpredicted by as much as 36.3% and 542%, respectively, if the Biot number is less than 0.1 and as much as 13.0% and 570% if the Biot number is between 0.25 and 0.4. A reduced-order model was developed to estimate the underpredicted maximum temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.