Abstract

Significantly improved immunity to hot-hole damage of the SiO/sub 2//Si structure is achieved by a shallow fluorine implantation into the poly-Si gate of MOS capacitors followed by a drive-in process. Compared to the nonfluorinated control, the fluorinated samples exhibit a dramatic reduction of both hole trapping probability and interface-trap generation under avalanche hole injection conditions. The degree of such an improvement increases monotonically as a function of the F implantation dose (up to 10/sup 16//cm/sup 2/). Significant decrease of the hole detrapping rate is also observed in fluorinated samples. Possible mechanisms are discussed.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.