Abstract

The aim of this study was to investigate the effects of stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) on bone marrow-derived stem cell (BMSC) mobilization in rat models of renal ischemia/reperfusion (I/R) injury. In addition, the effects of SCF and G-CSF on cellular apoptosis were explored in order to determine the protective mechanism of the two factors against renal I/R injury. A unilateral renal I/R injury model was established for the model and treatment groups. The treatment and treatment control groups were subcutaneously injected with SCF (200 µg/kg/day) and G-CSF (50 µg/kg/day) 24 h after the establishment of the model for five consecutive days. The total number of leukocytes in the peripheral blood and the cellular percentages of cluster of differentiation (CD)34+, renal CD34+ and apoptotic cells were detected. The total number of leukocytes in the peripheral blood and the percentages of CD34+ cells in the treatment and treatment control groups reached maximum levels on the fifth postoperative day and were significantly higher than those in the normal control and model groups. The number of renal CD34+ cells in the treatment group was significantly increased compared with that in the treatment control and model groups. The apoptotic indices (AIs) of the model and treatment groups were higher than those of the normal control and treatment control groups. The AI of the model group was significantly higher than that of the treatment group. In conclusion, the combined application of SCF and G-CSF can mobilize sufficient numbers of BMSCs and cause cellular 'homing' to the injured site, thus inhibiting apoptosis and promoting the repair of renal tubular injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.