Abstract

An autapse is a special kind of synapse established between the axon and dendrites of the same neuron. In the present study, we have investigated the cooperative effects of autapse and ion channel block on the collective firing regularity of Newman–Watts small-world networks of stochastic Hodgkin–Huxley neurons. We obtain autaptic time delay induced multi-coherence resonance (MCR) phenomenon in the absence of ion channel block. When the ion channel block is considered, we find that this autaptic delay induced MCR phenomenon enhances with the increasing of potassium channel block, whereas it weakens with the increasing of sodium channel block at weak and intermediate autaptic conductance regimes. However, at strong autaptic conductance regime neither sodium nor potassium channel block have a significant effect on the collective firing regularity of the network. Besides, we investigate the effects of the coupling strength, the network randomness and the cell size on the regularity. We obtain an optimal coupling strength value and an optimal cell size leading to a more prominent MCR effect. We also show that the MCR phenomenon increases with the increasing of network randomness in potassium channel block, but it needs to a minimum network randomness for its appearing in case of sodium channel block.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.