Abstract

The Monte Carlo algorithm was developed for simulating the trajectories of electrons elastically scattered in the solid. The distribution of scattering angles was determined using the partial wave expansion method. This algorithm was used to establish the influence of Auger electron elastic collisions on the results of quantitative AES analysis. The calculations were performed for the most pronounced KLL, L 3 MM and M 5 NN Auger transitions. It turned out that due to the elastic collisions the Auger electron signal is decreased by up to 10%. The corresponding decreased of the escape depth of Auger electrons reaches 30% as compared with the value derived from the inelastic mean free path. The values of the inelastic mean free path resulting from the overalyer method may be strongly affected by elastic scattering of Auger electrons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.