Abstract

In sensory neurophysiology, reverse correlation analyses have advanced our understanding of the spatio-temporal structure of receptive fields (RFs) and the tuning properties of individual neurons. Here, we used a psychophysical variant of the motion reverse correlation technique to investigate how visual selective attention influences human perceptual tuning curves for direction of motion. Direction tuning functions were computed by reverse correlating speeded target-present responses of human observers with a random sequence of brief, fully coherent motion impulses. We found that attention enhanced the amplitude of perceptual tuning curves for direction of motion, while tuning width remained unaffected. Furthermore, the full direction tuning profile across time could be well fitted by a separable model of direction and temporal tuning. Attention enhanced both the direction tuning and its temporal profile, without shifts or changes in shape. Thus, attention exerts a multiplicative effect on human perceptual tuning curves for direction of motion. An analysis of second-order correlations revealed a boost in the likelihood of responses to the target direction when it was followed by a motion impulse in the opposite direction. This perceptual effect might be mediated by biphasic neurons that are preferentially activated by a rapid succession of opposite motion directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call