Abstract

Glutathione S-transferase isoenzymes (GSTs) play a critical role in detoxification pathways. Here we report the tissue distribution of four antioxidant GSTs gene in common carp, and their expression profiles. We also investigated the GSTs activity in different tissues after exposure to the agricultural chemicals atrazine (ATR), chlorpyrifos (CPF), and their mixture. Relative changes in the mRNA abundance of the GST isoforms were examined by real time PCR in liver, brain, kidney and gill of common carp. After exposure and recovery, we observed a statistically significant decrease in the GSTs activity in animals exposed to high concentrations of ATR (428μg/L), CPF (116μg/L), and their mixture (113μg/L). At basal levels of tissue expression, four GSTs transcript were detected in liver, brain, kidney, and gill. High expression levels were found in all examined tissues. Transcription of some GST isoforms, GST kappa (GSTK), GST theta (GSTT) and GST rho (GSTR), decreased after exposure to CPF and ATR for the entire experimental period in both the kidney and gill. However, increased transcription of GST mu (GSTM) was observed in the kidney or gill 20d after exposure to ATR or CPF, respectively. Transcription of both GSTT and GSTR was inhibited for the entire experimental period in the brain, kidney and gill of animals exposed to the ATR/CPF mixture, but transcription of GSTM was induced in the liver after 40d of exposure. In summary, changes in the GSTs activity and their transcription varied within each organ and among organs of common carp after exposure to ATR, CPF, and their mixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call