Abstract

We have used primary cultures of rat striatum to study the effects of ATP analogues on the elongation of astrocytic processes, a parameter of astroglial cell differentiation. Parallel studies were performed with basic fibroblast growth factor, a known regulator of astroglial cell function. After three days in culture, both the growth factor and αβ-methylene-ATP induced dramatic increases in the mean length of astrocytic processes/cell. For both agents, effects were dose-dependent. The effect of αβ-methylene-ATP was antagonized by the trypanoside suramin and mimicked by 2-methyl-thio-ATP, suggesting the involvement of a suramin-sensitive P2-purinoceptor. Neither an additive nor a synergistic effect between αβ-methylene-ATP and basic fibroblast growth factor on the elongation of processes was detected in cultures exposed to both agents. Indeed, an inhibition with respect to the effects induced by either agent alone was recorded, suggesting that the growth factor and the purine analogue can modulate astrocytic differentiation by activation of common intracellular pathways.It is concluded that, like basic fibroblast growth factor, ATP can promote the maturation of astrocytes towards a more differentiated phenotype characterized by the presence of longer astrocytic processes. These findings might have interesting implications for astroglial cell differentiation during brain development and for ischemia- and trauma-associated hypergliosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.