Abstract

The South China Sea (SCS) is one of the world’s largest oligotrophic marginal seas. Increases in biomass and primary production in the surface layer of the northern SCS are affected by anthropogenic aerosol use among north Asian peoples. The seasonal variation of dry deposition and its contribution to new production in the ocean are vital to determining the effect that such dry deposition has on the biogeochemical cycle of the SCS. This study collected 240 samples of total suspended particles at Dongsha Island in the northern SCS from April 2007 to March 2009; the major ions and water-soluble nitrogen species in the samples were analyzed. The analysis results indicated that the concentration distributions of major water-soluble ions and nitrogen species in total suspended particles exhibited significant seasonal (source) variation. The north-east monsoon seasons (autumn to spring) brought relatively high concentrations because most air masses during this period arrived from the northern continental region. We found that the concentration of nitrogen species shows a latitude distribution, gradually decreasing from north to south. In addition, this study also discovered that the ratio of organic nitrogen to total dissolved or water-soluble nitrogen also varies in a similar manner, resulting in a concentration of <20% for locations north of 30° N and >30% for those south of 30° N. Aerosols at Dongsha Island mainly comprised sea salt; however, significant chloride depletion was observed during the north-east monsoon season. The molar ratio of NH4+ to non–sea salt (NSS) sulfate (nss-SO42−) was 0.8, indicating that the amount of artificially produced NH4+ in the region was insufficient for reaction with nss-SO42−. Therefore, NH4+ was mainly present in the form of NH4HSO4. The fluxes of water-soluble inorganic nitrogen (WSIN) and water-soluble organic nitrogen (WSON) within the region were 23 ± 13 and 27 ± 15 mmol m−2 y−1, respectively. The new production converted from atmospheric water-soluble nitrogen species in the northern SCS was estimated to be 0.52–0.81 mmol C m−2 d−1. This flux made about 5.6–8.7% (the global average was about 3.5%) contribution to the primary production (9.24 mmol C m−2 d−1) of the SCS surface water. This result indicates that the ocean’s external nitrogen supply, provided by anthropogenic aerosols, is vital for the biogeochemical cycle in Asian marginal seas, particularly the northern SCS.

Highlights

  • Anthropogenic and natural sources of aerosols have a substantial effect on global weather and atmospheric chemistry, and they have a particular influence on the marine ecosystem in the pelagic zone [1]

  • To investigate the impact of atmospheric nitrogen species on the nitrogen cycle in surface seawater, the present study examined the effect of dry deposition on the biogeochemistry of the northern South China Sea (SCS) as well as new production induced by atmospheric nitrogen deposition in the surface seawater of marginal seas in East Asia

  • Regarding variation of wind direction, the north-east monsoon was in effect across winter, spring, and autumn, whereas the south-west monsoon occurred in summer; the wind direction was prone to drastic changes from June to August because of typhoons

Read more

Summary

Introduction

Anthropogenic and natural sources of aerosols have a substantial effect on global weather and atmospheric chemistry, and they have a particular influence on the marine ecosystem in the pelagic zone [1]. High concentrations of dust and anthropogenic aerosols produced in the springtime in continental Asia are transmitted to the North. These concentrations might even be transmitted to. Generated by the effect of wind on the ocean’s surface, sea salt aerosols are one of the major components of the total aerosol mass near the Earth’s surface. The major ions they contain are similar to those in seawater, with chloride ions contributing to the majority of aerosol mass and concentration [4]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.