Abstract

This study investigated the ocean-atmosphere interaction effect on the winter surface air temperature in Taiwan. Temperature fluctuations in Taiwan and marine East Asia correlated better with a SST dipole in the western North Pacific than the SST in the central/eastern equatorial Pacific. During the warm (cold) winters, a positive (negative) SST anomaly appears in marine East Asia and a negative (positive) SST anomaly appears in the Philippine Sea. The corresponding low-level atmospheric circulation is a cyclonic (anticyclonic) anomaly over the East Asian continent and an anticyclonic (cyclonic) circulation in the Philippine Sea during the warm (cold) winters. Based on the results of both numerical and empirical studies, it is proposed that a vigorous ocean-atmosphere interaction occurring in the western North Pacific modulates the strength of the East Asian winter monsoon and the winter temperature in marine East Asia. The mechanism is described as follows. The near-surface circulation anomalies, which are forced by the local SST anomaly, strengthen (weaken) the northeasterly trade winds in the Philippine Sea and weaken (strengthen) the northeasterly winter monsoon in East Asia during warm (cold) winters. The anomalous circulation causes the SST to fluctuate by modulating the heat flux at the ocean surface. The SST anomaly in turn enhances the anomalous circulation. Such an ocean-atmosphere interaction results in the rapid development of the anomalous circulation in the western North Pacific and the anomalous winter temperature in marine East Asia. This interaction is phase-locked with the seasonal cycle and occurs most efficiently in the boreal winters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.