Abstract

Acetylsalicylic acid (ASA) prevents thromboembolic events by inhibiting platelet function through blocking of cyclooxygenase type 1 (COX-1). A nitroderivate of ASA, 2-(acetyloxy)benzoic acid 3-(nitrooxymethyl)-phenyl ester (NCX 4016) was synthesized, which additionally acts through nitric oxide release. In various in vitro and animal studies NCX 4016 exhibited antithrombotic and anti-platelet properties. We used the standardized model of endotoxin infusion into human volunteers to compare the effects of NCX 4016 and ASA on platelet function and TF-induced coagulation activation. The trial consisted of two parts. In the first part, 10 healthy male volunteers were included in a randomized, open cross-over trial to find a NCX formulation with optimal tolerability and pharmacokinetic data were obtained. The second part was a randomized, double blind placebo controlled clinical trial consisting of 30 healthy male volunteers in three parallel groups (n = 10 per group). Volunteers received either NCX 4016 (800 mg b.i.d.), ASA (425 mg b.i.d.) or placebo for 7 days, before infusion of 2 ng/kg endotoxin on day 8. ASA attenuated the endotoxin-induced platelet plug formation (measured by PFA-100) significantly better than NCX 4016 and placebo (p < 0.004), while there was no difference in soluble P-selectin or VWF-levels. Urine 11-dehydro-thromboxane B2 levels were significantly lower in the ASA and NCX 4016 groups as compared to placebo (p < 0.05). Neither ASA nor NCX 4016 significantly changed prothrombin fragment1 + 2, D-Dimer or tissue factor (TF)-mRNA levels. In summary, NCX 4016 had no effect on VWF release, platelet activation as measured by soluble P-selectin or TF gene expression. NCX 4016, at the dose tested, unlike ASA, had no effect on platelet collagen/epinephrine induced plug formation under high shear rates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.