Abstract

The aim of the present study was to explore the preparation of arsenic trioxide (As2O3) nanoparticles and examine the antitumor effects of these nanoparticles on NB4 cells. As2O3 nanoparticles were prepared using the sol-gel method and characterized using transmission electron microscopy and energy dispersive spectroscopy. The results indicated that the As2O3 nanoparticles prepared in the present study were round or elliptical, well dispersed and had an ~40-nm or <10-nm diameter. The antitumor effects of As2O3 nanoparticles at various concentrations were analyzed by flow cytometry and the MTT assay, and were compared with those of traditional As2O3 solution. At the same concentration and incubation time (48 h), the survival rate of cells treated with As2O3 nanoparticles was significantly lower than that of cells treated with the As2O3 solution. The growth inhibition rate under both treatments was time- and dose-dependent. In addition, at the same concentration and incubation time, the apoptosis rate of the cells treated with As2O3 nanoparticles was significantly higher than that of the cells treated with the As2O3 solution. Furthermore, As2O3 nanoparticles resulted in a greater reduction in the expression of the anti-apoptotic protein B-cell lymphoma 2 compared with the As2O3 solution. In conclusion, As2O3 nanoparticles, prepared using the sol-gel method, were found to produce a stronger cytotoxic effect on tumor cells than that produced by the As2O3 solution, possibly by inhibiting Bcl-2 expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call