Abstract

The silkworm (Bombyx mori) is an economically important insect and serves as a model organism for Lepidoptera. To investigate the effects of the intestinal microbial population on the growth and development of larvae fed an artificial diet (AD) during the young stages, we analyzed the characteristics of the intestinal microbial population using 16S rRNA gene sequencing technology. Our results revealed that the intestinal flora of the AD group tended to be simple by the 3rd-instar, which Lactobacillus accounting for 14.85% and leading to a decreased pH in the intestinal fluid. In contrast, the intestinal flora of silkworms in the mulberry leaf (ML) group showed continuous growth of diversity, with Proteobacteria accounting for 37.10%, Firmicutes accounting for 21.44%, and Actinobacteria accounting for 17.36%. Additionally, we detected the activity of intestinal digestive enzymes at different instars and found that the activity of digestive enzymes in the AD group increased by larval instar. Protease activity in the AD group was lower during the 1st- to 3rd-instars compared to the ML group, while α-amylase and lipase activities were significantly higher in the AD group during the 2nd- and 3rd-instar compared to the ML group. Furthermore, our experimental results indicated that changes in the intestinal population decreased the pH and affected the activity of proteases, which might contribute to the slower growth and development of larvae in the AD group. In summary, this study provides a reference for investigating the relationship between artificial diet and intestinal flora balance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call