Abstract

The present article explores an experimental study for nucleation and non-equilibrium growth of silver nanoparticles in a soda-glass matrix. Ion-irradiation induced recoiling of silver atoms with argon ions (at energy 100 keV) facilitates nucleation as well as growth of the silver nanoparticles in the soda-glass matrix. Small growth of the silver nanoparticles in the soda-glass matrix has been experimentally observed after the irradiation with higher fluences of the argon ions. Role of the argon ions for the evolution of the silver nanoparticles in the soda-glass matrix has been elucidated in the present report. With increase of the argon-ion fluences, while slight athermal growth of the silver nanoparticles has been estimated, drastic increase in the optical responses and Rutherford backscattering (RBS) yields of the silver nanoparticles have been observed in the sample with the maximum fluences. Possible correlations of increase of argon-ion fluences and the observed experimental results (optical and RBS, in particular) have been explained in this article. Although it has been demonstrated using the silver metal film on a soda-glass substrate as a model example, the non-equilibrium approach of nucleation and ion-beam controlled growth of metal nanoparticles in a matrix should be applicable to other immiscible systems as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.